Step of Proof: band_tt_simp
9,38
postcript
pdf
Inference at
*
I
of proof for Lemma
band
tt
simp
:
u
:
. (
u
tt) =
u
latex
by ((((UnivCD)
CollapseTHENM (BoolEval))
)
CollapseTHEN ((Auto_aux (first_nat 1:n
C
) ((first_nat 1:n),(first_nat 3:n)) (first_tok :t) inil_term)))
latex
C
.
Definitions
t
T
,
ff
,
if
b
then
t
else
f
fi
,
tt
,
p
q
,
x
:
A
.
B
(
x
)
,
Unit
,
,
Lemmas
bool
wf
,
bfalse
wf
,
btrue
wf
origin